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Abstract

Link prediction in biomedical knowledge graphs (KGs) aims
at predicting unknown interactions between entities, includ-
ing drug-target interaction (DTI) and drug-drug interaction
(DDI), which is critical for drug discovery and therapeutics.
Previous methods prefer to utilize the rich semantic relations
and topological structure of the KG to predict missing links,
yielding promising outcomes. However, all these works only
focus on improving the predictive performance without con-
sidering the inevitable noise and unreliable interactions exist-
ing in the KGs, which limits the development of KG-based
computational methods. To address these limitations, we pro-
pose a Denoised Link Prediction framework, called Denois-
edLP. DenoisedLP obtains reliable interactions based on the
local subgraph by denoising noisy links in a learnable way,
providing a universal module for mining underlying task-
relevant relations. To collaborate with the smoothed seman-
tic information, DenoisedLP introduces the semantic sub-
graph by blurring conflict relations around the predicted link.
By maximizing the mutual information between the reliable
structure and smoothed semantic relations, DenoisedLP em-
phasizes the informative interactions for predicting relation-
specific links. Experimental results on real-world datasets
demonstrate DenoisedLP outperforms state-of-the-art meth-
ods on DTI and DDI prediction tasks, and verify the effec-
tiveness and robustness of denoising unreliable interactions
on the contaminated KGs.

1 Introduction
Identifying missing links in biomedical knowledge graphs
(KGs) is pivotal to drug discovery and therapeutics, includ-
ing drug-target interaction (DTI) prediction (Ye et al. 2021)
and drug-drug interaction (DDI) prediction (Lin et al. 2020;
Yu et al. 2021). The success of link prediction based on KGs
in social networks (He, Yang, and Shi 2020) and recommen-
dations (Wang et al. 2019; Yang et al. 2022) encourages re-
searchers to develop various computational methods to ac-
celerate drug development. However, accurately recogniz-
ing the unknown interactions between various entities with
computational models remains challenging.

Previous methods utilized the topological properties of
the integrated association networks (e.g., drug-disease-
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Figure 1: The explanatory case of entity unalignment and
factual errors existed in DRKG. Chebi:28300 and DB00130
indicate the same drug L-Glutamine, but they are treated
as different entities, which results in entity unalignment and
facts missing. Meanwhile, the source text represents the
gene MSLN as a biomarker for cancer patients, and no confi-
dence indicates it has a role in the disease Mental Disorders,
which introduces noisy interactions into the KG.

association networks) to learn low-dimensional vector rep-
resentations for predicting unknown edges (Luo et al. 2017;
Wan et al. 2019). These methods adopted network-based
models, which cannot model semantic relations between
various entities (e.g., drug, pathway, disease). Subsequently,
a line of works applied the knowledge graphs embed-
ding methods to learn the semantic relations with low-
dimensional embeddings for predicting DTI (Mohamed,
Nováček, and Nounu 2020) and DDI (Celebi et al. 2019).
However, these methods are limited to efficiently learning
the topological structure of complex biomedical KGs. Re-
cently, various models (Lin et al. 2020; Yu et al. 2021; Ma
et al. 2022) based on hetergeneous graph neural networks
have achieved promising results. These methods focus on
learning the semantic knowledge and local structure of the
neighboring relational paths, which can obtain the semantic
relations and tractable pathways around the predicted link.

Despite their effectiveness, existing KG-based mod-
els suffer from noisy interactions and conflict relations
in biomedical KGs. Most biomedical knowledge graphs
are constructed from unstructured text and multi-source
databases by using the technology of nature language pro-
cessing (Pujara, Augustine, and Getoor 2017; Ioannidis
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et al. 2020), which results in conflicts and factual er-
rors in the KGs. For example, as shown in Figure 1,
the Chebi:28300 and DB00130 are different entities in
DRKG (Ioannidis et al. 2020) but they indicate the same
drug L-Glutamine1, which results in facts missing (e.g., the
fact of the drug DB00130 treats the disease Liver Injury).
In addition, the source text indicates the gene MSLN as a
predictor for cancer patients (Okła et al. 2018), and no evi-
dence supports it has a role in the disease Mental Disorders.
This may introduce a fact error into DRKG. In this case, ex-
isting KG-based methods are ineffective due to these noisy
interactions. Based on the above observations, we propose
a novel denoising model, called DenoisedLP. Intuitively, we
design a structure reliability learning module for the local
subgraph guided by downstream tasks, to contain reliable
interactions. Inspired by the success of smooth technologies
in image denosing (Ma et al. 2018; Guo et al. 2019) by blur-
ring noisy pixels, we develop a smooth semantic preserva-
tion module, which blurs the sparse relations and filtering
out task-irrelevant edges. This reduces the negative impact
of conflict relations existing in the KG. To focus on infor-
mative interactions between reliable structure and smoothed
semantic relations, we maximize the mutual information be-
tween the representations of them globally.

In summary, the contributions of DenoisedLP can be sum-
marized as follows:
• To the best of our knowledge, this is the first work that

proposes a denoising method to learn the reliable inter-
actions and smooth semantics by blurring the sparse re-
lations of biomedical KGs, which alleviates the negative
influence of noisy interactions and conflicts.

• We emphasize reliable interactions by maximizing the
mutual information between the learned subgraph struc-
ture and smoothed semantic relations to efficiently drop
information irrelated to downstream tasks.

• Extensive experiments of the DTI and DDI prediction on
benchmark datasets and contaminated KG demonstrate
DenoisedLP outperforms the state-of-the-art baselines.

2 Related Work
Link Prediction on Biomedical KG
Link prediction is increasingly adopted in biomedical
knowledge graphs to identify unknown biological relations
and interactions between various entities (Kishan et al.
2021). The line of works mainly focus on the completion
of DTI and DDI relations on KGs. TriModel (Mohamed,
Nováček, and Nounu 2020) and KG-DDI (Celebi et al.
2019) proposed novel knowledge graph embedding mod-
els to learn the informative global structure and semantic
knowledge for completing the relations of DTI and DDI, re-
spectively. To obtain rich neighborhood information and se-
mantic relations of KG, KGNN (Lin et al. 2020) proposed a
graph neural network to learn the structural relations, which
enhances the prediction of the DDI relations. Subsequently,
KGE-NFM (Ye et al. 2021) developed a unified knowledge
graph embedding framework to predict missing DTI links by

1https://go.drugbank.com/drugs/DB00130

combining the knowledge graph and recommendation sys-
tem. However, these methods only consider the structure of
the biomedical KGs. Recent methods proposed various fu-
sion models to integrate the features of molecular graphs
and KG embeddings for enhancing DTI (Ma et al. 2022)
and DDI (Chen et al. 2021) prediction. To focus on the local
structure of the predicted entity pairs, SumGNN (Yu et al.
2021) designed a new method to efficiently emphasize the
subgraph structure of the biomedical KG, which aids the
drug interaction prediction. GraIL (Teru, Denis, and Hamil-
ton 2020) and SNRI (Xu et al. 2022) proposed to model
the enclosing subgraph structure and neighboring relational
paths around the target triple to effectively predict unknown
links. However, the presence of noise such as entity mis-
alignment, and false positive triples in the KGs greatly de-
grades the performance of these methods. To address the
above limitations, we develop reliable structure learning and
smooth semantic preservation modules to denoise unreason-
able interactions and relations.

Denoising Methods on Graphs
Denoising on graphs has been successfully applied to
the recommendation (Fan et al. 2023) and social net-
works (Quan et al. 2023). RGCF (Tian et al. 2022) pro-
posed a self-supervised robust graph collaborative filtering
model to denoise unreliable interactions and preserve the di-
versity in a contrastive way for the recommendation. Simi-
larly, SGDL (Gao et al. 2022) provided a universal solution
using self-guided learning to denoise implicit noisy feed-
back that can generalize to various recommendation tasks.
However, these methods are limited in their ability to de-
noise noisy interactions with positive and negative feedback
in domain-specific networks, and cannot consider the com-
plex relationships in biomedical KGs. To tackle these limi-
tations, inspired by the smoothing insight in image denois-
ing (Ma et al. 2018; Guo et al. 2019), we blur the complex
relations to ignore task-irrelevant edges and learn the reli-
able interactions of the local subgraph.

3 Methodology
Preliminaries
Biomedical Knowledge Graph. We define a biomedical
knowledge graph DRKG (Ioannidis et al. 2020) as Gkg =
{(h, r, t)|h, t ∈ E , r ∈ R} where each triple (h, r, t) de-
scribes a relation r (e.g., DTI and DDI) between the biomed-
ical entities h and t with different node types eh, et (e.g.,
drugs and genes) as a fact.

Local Subgraph. Based on GraIL (Teru, Denis, and
Hamilton 2020), when given a KG Gkg and a link (u, v) with
relation r, we extract a local subgraph surrounding the tar-
get link. Initially, we obtain the k-hop neighboring nodes
Nk(u) = {s|d(u, s) ≤ k} and Nk(v) = {s|d(v, s) ≤ k}
for both u and v, where d(·, ·) represents the distance metric
between target pair on Gkg . We then obtain the set of nodes
V = {s|s ∈ Nk(u) ∩ Nk(v)} as vertices of the local sub-
graph. Finally, we extract the edges E linked by the set of
nodes V from Gkg as the local subgraph Gsub = (V,E).
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Figure 2: The DenoisedLP framework comprises three modules for predicting links in a given KG: (1) Initializing the entity
and relation embeddings of the KG using RotatE; (2) Denoising the noisy interactions around the predicted link by learning
a reliable subgraph structure and preserving the smooth semantic relations; (3) Maximizing the mutual information between
refined and semantic subgraphs to focus on the informative interactions.

Semantic Subgraph. Given a link (u, v) with the scheme
(eu, r, ev), we define a set of key metapaths P =
{(reu , r1, ..., rk, rev )|reu ∈ N rel(eu), rk ∈ R, rev ∈
N rel(ev)} between nodes u and v, where N rel(·) are the
neighboring relations around target entity type and k denotes
the path length. According to the defined set of metapaths,
we can extract various relational paths around the given link
from original KG Gkg that construct a semantic subgraph
Gsem = {(h, r(h,t), t)|h, t ∈ E , r(h,t) ∈ R(eh,et)}, where
R(eh,et) denotes the relations between entity type eh and et.

Problem Definition. In this paper, we focus on predict-
ing the missing links of the biomedical KG Gkg by a
learnable model to learn reliable interactions and filter out
task-independent noise. Building upon the approach out-
lined in (Yin et al. 2022), we convert the link prediction
into a classification task and take the relations classifica-
tion as downstream tasks. Our goal is to estimate the link
probability of various relations (e.g., DTI and DDI). For
a given unknown link (u, v) with relation r, we propose a
model to predict the probability of r denoted as p(u,r,v) =
F((u, r, v)|Θ,Gkg,Gsub,Gsem) by maximizing the mutual
information between the refined and semantic subgraphs.

Initialization of Knowledge Graph
In this paper, we utilize DRKG (Ioannidis et al. 2020) as
our external biomedical KG. DRKG contains complex re-
lationships between biological entities (e.g., symmetric and
inverse interactions among genes). To effectively learn the
semantic knowledge within the DRKG, we use the knowl-
edge graph embedding method with relation rotation follow-
ing in (Sun et al. 2018). Given a triple (h, r, t), we expect
that xt = xh ⊙ er, where xh,xt and er represent the em-
beddings of entities h, r and the relation r, respectively. The

score function is defined as follows:

s(h, r, t) = ||xh ⊙ er − xt||, (1)

where the ⊙ represents the element-wise product. By mini-
mizing the score of positive triples and maximizing the score
of negative ones, we obtain the entity and relation embed-
dings X and E as the initial features of the biomedical KG.

Subgraph Denoising
Structure Reliability Learning. To enable robust estima-
tion of noisy interactions in KGs, we propose a structural re-
liability learning module for the local subgraph, which can
dynamically adjust the reliable subgraph structure by using
the pre-trained node features and the feedback of the down-
stream link prediction tasks. The underlying assumption is
that nodes with similar features or structures are more likely
to interact with each other than those with irrelevant features
or structures (Zhang and Zitnik 2020). To accomplish this,
our objective is to assign weights to all edges between the
set of nodes using a reliability estimation function denoted
as F (·, ·), which relies on pre-trained node features. Then,
the refined local subgraph can be generated by filtering out
noisy edges with low weight and retaining the reliable links
with larger ones, as shown in Figure 2. Specifically, given
an extracted local subgraph Gsub = (V,E) around the pre-
dicted link (u, v), we model all possible edges between the
nodes as a set of mutually independent Bernoulli random
variables parameterized by the learned attention weights π.

G
′

sub =
⋃

i,j∈V

{(i, j) ∼ Ber (πi,j)} . (2)

Here, V represents the set of nodes within the local subgraph
and (i, j) ∈ E denotes the edge between nodes i and j. We



optimize the reliability probability π jointly with the down-
stream link prediction tasks. The value of πi,j describes
the task-specific reliability of edge (i, j) where smaller πi,j

indicates that the edge (i, j) is more likely to be noised
that should be assigned a lower weight or be removed. For
each edge between node pair (i, j), the reliable probability
πi,j = F (i, j) can be calculated as follows:

πi,j = sigmoid
(
Z(i)Z(j)T

)
,

Z(i) = MLP (X (i)) ,
(3)

where X (i) represents the pretrained feature of node i,
Z(i) is the learned embedding of node feature X (i), and
MLP (·) denotes a two-layer perceptron in this work. Since
the extracted local subgraph Gsub is not differentiable with
the probability π as Bernoulli distribution, we use the repa-
rameterization trick and relax the binary entries Ber(πi,j) to
update the π:

Ber(πi,j) ≈ sigmoid

(
1

t

(
log

πi,j

1− πi,j
+ log

ϵ

1− ϵ

))
, (4)

where ϵ ∼ Uniform(0, 1), t ∈ R+ indicates the tempera-
ture for the concrete distribution. With t > 0, the function
is smoothed with a well-defined gradient ∂Ber(πi,j)

∂πi,j
that en-

ables the optimization of learnable subgraph structure during
the training process. The subgraph structure after the con-
crete relaxation is a weighted fully connected graph, which
is computationally expensive. We hence drop the edges of
the subgraph with a probability of less than 0.5 and get the
refined graph G′

sub = (V,E
′
). Subsequently, we perform

the L-layer GCNs (Kipf and Welling 2017) on the refined
subgraph with pretrained node features to obtain its global
representation hsub as follows:

hl = GCN
(
hl−1,G

′

sub

)
,

hsub =
1

|V |

V∑
i∈V

σ(f(hL(i))),
(5)

where the initial h0 = X and σ(·) represents the activation
function. f(·) denotes the feature transformation operation.

Smooth Semantic Preservation. KGs often contain some
conflict entities and relations that introduce a lot of noise
into the downstream link prediction tasks (Pujara, Augus-
tine, and Getoor 2017). Inspired by the smoothing insight of
image denoising (Guo et al. 2019; Ma et al. 2018), we design
a smooth semantic preservation module, which blurs the
sparse relations and preserves the smoothed relational se-
mantic to reduce the negative impact of the conflicts. Specif-
ically, we smooth the KG by leveraging prior knowledge to
generalize the interactions between biological entities into
positive, interaction, and negative (i.e., the relations positive,
interaction, and negative) according to the semantic simi-
larity of the relations. Subsequently, we develop a semantic
subgraph extraction module to explore the neighboring re-
lations by extracting the paths with predefined metapaths.
Specifically, given the link (u, v) with relation r, we use the
defined metapaths to extract relational paths and construct a

semantic subgraph Gsem. After obtaining the semantic sub-
graph, we design a L-layer relational graph neural network
(R-GNN) inspired by (Schlichtkrull et al. 2018; Xu et al.
2022) to obtain the global semantic representation of Gsem.
Specifically, we define the updating function of the nodes in
l-th layer as:

xl
i =

∑
r∈R

∑
j∈Nr(i)

αi,rW
l
rϕ(e

l−1
r ,xl−1

j ),

αi,r = sigmoid
(
W1

[
xl−1
i ⊕ xl−1

j ⊕ el−1
r

])
,

(6)

where Nr(i) and αi,r denote the neighbors and the weight
of node i under the relation r, respectively. ⊕ indicates
the concatenation operation. Wl

r represents the transforma-
tion matrix of relation r, and ϕ is the aggregation operation
ϕ(x, e) = x − e to fuse the hidden features of nodes and
relations. In addition, we initialize the node feature x0

i and
relation representation e0r using the pretrained embeddings
X and E. Finally, we obtain the global representation hsem

of the semantic subgraph Gsem as follows:

hsem =
1

|Vsem|

Vsem∑
i∈Vsem

σ(f(xL
i )), (7)

where Vsem is the node set of semantic subgraph Gsem. For
more information about the smoothed KG and defined meta-
paths, please refer to the Technical Appendix.

MI Maximization in Subgraphs
To cooperate in denoising errors contained in the KG from
different views of the local structure and smoothed semantic
relations, we design an auxiliary self-supervised task based
on mutual information (MI) maximization. We seek that the
smoothed relations blur task-irrelevant edges and cooperate
with the structure reliability learning for denoising noisy in-
teractions. Specifically, we utilize InfoNCE (Oord, Li, and
Vinyals 2018) to estimate mutual information between the
representations of local structure and semantic subgraphs
globally. In a formal context, when addressing the concept
of subgraph mutual information, we treat the representations
originating from both the reliable structure and the semantic
subgraph, both of which are extracted from a common link,
as positive pairs. Conversely, the representations stemming
from two distinct links within the refined local structure and
the smoothed semantic are treated as adversarial pairs:

I(hsub;hsem) = − log
exp(d(hsub,hsem)/τ)∑

m∈P exp(d(hsub,hm
sem)/τ)

, (8)

where d(·) is set as a cosine similarity function to measure
the similarity between two representation vectors and τ is a
hyper-parameter indicating the temperature; P represents all
link pairs to be predicted and hm

sem denotes the representa-
tion of global semantic subgraph for the link m.

Optimization
Similar to (Yin et al. 2022), we convert the link prediction to
a classification task. For a given link (u, v) with relation r,
we model the interaction probability p(u,r,v) of the link by



adopting the learned representations from the structure and
semantic views as follows:

p(u,r,v) = σ(f([hsub ⊕ hsem])), (9)

where the ⊕ indicates the concatenate operation. We then
adopt the cross-entropy loss:

ℓ(u, v) = −
∑
r∈R

log(p(u,r,v))y(u,r,v), (10)

where y(u,r,v) is the real label of the given link. To denoise
unreliable interactions from the structure and semantic sub-
graphs, we jointly optimize the link prediction task and the
self-supervised MI maximization contrastive learning:

ℓtotal(u, v) = ℓ(u, v) + λI(hsub;hsem), (11)

where λ is a hyper-parameter that weighs the contribution of
the self-supervised MI mechanism.

4 Experiments
In this section, DenoisedLP2 performs the link prediction
task for two key relations (i.e., drug-target-interaction and
drug-drug-interaction) based on biomedical KG.

Experimental Setups
Datasets. For link prediction of the relation DTI, we em-
pirically perform experiments on two real-world datasets:
(1) DrugBank (Wishart et al. 2018) collects the unique
bioinformatics and cheminformatics resources that contains
12,063 drug-target pairs with 2,515 drugs, and 2,972 targets.
(2) DrugCentral (Avram et al. 2023) is a drug database
built from multiple sources, which contains 9,317 interac-
tions between 1,061 drugs and 1,388 targets. For DDI pre-
diction, we evaluate DenoisedLP on two wide-used datasets:
(1) DrugBank (Wishart et al. 2018) contains 191,984 drug
pairs with 86 types associated pharmacological relations
for 1,703 drugs (e.g., increase of cardiotoxic activity). (2)
TWOSIDES (Tatonetti et al. 2012) dataset contains 335
drugs with 26,443 drug pairs for 200 various side effect
types. Following (Zitnik, Agrawal, and Leskovec 2018), we
ensure each DDI type has at least 900 drug pairs by keep-
ing 200 commonly-occurring types. In addition, we adopt
the DRKG (Ioannidis et al. 2020) as the biomedical knowl-
edge graph, which contains 97,238 entities and 5,874,261
triples. To smooth the semantic relations and filter out task-
irrelevant edges of the DRKG, we blur the interactions be-
tween drugs, genes, and diseases into three types according
to the semantic similarity of various relations.

Evaluation strategy. For the DrugBank and DrugCentral
datasets in predicting relation DTI, we ensure the positive
and negative samples for each drug are balanced by ran-
dom generating. Following SumGNN (Yu et al. 2021), we
keep the train/valid/test sets of the DrugBank dataset con-
taining samples of all types for predicting DDI links. For
the TWOSIDES dataset, we follow the method in (Zitnik,
Agrawal, and Leskovec 2018) to generate negative coun-
terparts for every positive sample from the unknown set of

2Code and data are available at https://github.com/xxx/xxx

drug pairs. We perform 10-fold cross-validation and select
the best model based on the AUC-ROC of the validation set.
The average performance and standard deviation evaluated
on the test set are reported on Table 1 and Table 2.

Baselines. To verify the performance of DenoisedLP, we
compare it against various baselines as follows:

• GCN-KG and RotatE (Sun et al. 2018) adopted the
graph neural network (Kipf and Welling 2017) and rela-
tional rotation in complex space to learn the embedding
of entities and relations from the DRKG, and then pre-
dicted the links for DTI or DDI using the embeddings.

• GraIL (Teru, Denis, and Hamilton 2020) utilized a lo-
cal subgraph for inductive relation prediction on KGs. To
model neighboring relations effectively, SNRI (Xu et al.
2022) adopted the semantic subgraphs by extracting se-
mantic relational paths to learn informative embedding.

• TriModel (Mohamed, Nováček, and Nounu 2020) and
KGE-NFM (Ye et al. 2021) developed new methods to
learn the relational representation of entities and rela-
tions, then predict the unknown links for DTI.

• KGNN (Lin et al. 2020) aggregated neighborhood infor-
mation for each node from their local receptive via GNN
on the biomedical knowledge graph for link prediction of
relation DDI. SumGNN (Yu et al. 2021) focused on ex-
tracting information from the local subgraph of external
KG in a learnable way and converts the link prediction
into a multi-type and multi-class classification for DDI.

All baselines are implemented based on the office code and
we tuned their hyperparameters to achieve optimal results.

Comparison with Baselines
We report the performance of our model and baselines for
predicting links of the relations DTI and DDI in Table 1 and
Table 2, respectively. As shown in Table 1, we observe De-
noisedLP achieves the best prediction results in DTI links on
both DrugBank and DrugCentral datasets. Specifically, De-
noisedLP improves the AUC-ROC and AUC-PR by at least
2.19% and 2.43% respectively on the DrugBank dataset, and
achieves 2.45% and 2.71% absolute increase over the best
baseline on DrugCentral data. For the prediction of DDI,
we find that the boosts of DenoisedLP on DrugBank for the
multi-class task in Micro-F1 and Micro-Recall score up to
1.93% and 2.76% respectively. The performance of Denois-
edLP on the TWOSIDES dataset has achieved 1.2%, and
2.02% improvement in AUC-ROC and AUC-PR compared
with the best baseline.

Furthermore, we have the following observations: (1)
Compared with RotatE, the GCN-KG utilizing the neigh-
boring information and structures achieves better perfor-
mance on DTI and DDI prediction, which indicates that the
neighboring structure benefits the downstream link predic-
tion tasks. (2) Compared with TriModel and KGNN, the
SNRI using local semantic relations performs better than
them on DrugBank for predicting DTI and DDI, which im-
plies that the local semantic relations are more effective
than the global structure and relations in predicting unknown
links. (3) Among the subgraph-based methods (i.e., GraIL,



Methods DrugBank DrugCentral

AUC-ROC AUC-PR AUC-ROC AUC-PR

GCN-KG 80.41 ± 0.15 79.33 ± 0.21 84.66 ± 0.32 83.88 ± 0.15
RotatE 77.65 ± 0.31 75.99 ± 0.13 81.18 ± 0.62 81.03 ± 0.11
GraIL 80.54 ± 0.17 81.37 ± 0.37 82.74 ± 0.45 82.89 ± 0.57

TriModel 81.23 ± 0.13 81.85 ± 0.22 80.91 ± 0.21 81.59 ± 0.55
SNRI 81.33 ± 0.39 82.09 ± 0.33 82.74 ± 0.45 82.89 ± 0.57

KG-MTL 82.55 ± 0.31 81.79 ± 0.52 84.39 ± 0.55 83.13 ± 0.74
KGE-NFM 82.71 ± 0.22 82.09 ± 0.52 86.34 ± 0.16 84.65 ± 0.14

DenoisedLP 84.90 ± 0.35 84.52 ± 0.44 88.79 ± 0.23 87.36 ± 0.19
ours w/o SRL 82.32 ± 0.13 82.55 ± 0.11 86.26 ± 0.07 85.24 ± 0.12
ours w/o SSP 81.78 ± 0.23 83.19 ± 0.21 86.54 ± 0.14 86.28 ± 0.15
our w/o MI 82.05 ± 0.09 82.18 ± 0.18 86.34 ± 0.09 86.98 ± 0.17

Table 1: The performance on DrugBank and DrugCentral for
DTI prediction. The boldface denotes the highest score and
underline indicates the second highest score.

SNRI, and SumGNN), DenoisedLP can achieve superior im-
provement. This is because the noisy interactions in the lo-
cal subgraph may make it hard for models to learn reliable
neighborhood information effectively, degrading their per-
formance. Unlike these models, the DenoisedLP reduces the
negative influence of noise by denoising unreliable interac-
tions in a learnable way and removing task-irrelevant rela-
tions, which achieves superior results. The overall perfor-
mance compared with the baselines demonstrates the effec-
tiveness and robustness of our model.

Ablation Study
To investigate the impact of each module in DenoisedLP,
we perform an ablation study on all datasets for DTI and
DDI prediction by removing: (i) structure reliability learn-
ing (called ours w/o SRL), (ii) smooth semantic preserva-
tion (called ours w/o SSP), (iii) Mutual information (MI)
maximization of dual-view subgraphs (called ours w/o MI),
respectively. We can observe that all variants of DenoisedLP
perform worse than the original model in Table 1 and Ta-
ble 2, which verifies the effectiveness of each component.

ours w/o SRL. We observe that the performance value has
a lot of reduction on all datasets for DTI and DDI prediction
respectively, after removing the structure reliability learn-
ing module. The reason may be that the unreliable subgraph
structure is less expressive for downstream tasks, which can-
not effectively eliminate the negative influence of noisy in-
teractions. In contrast, a complete reliable structure can im-
prove the performance of the original model by removing
possible noise and retaining trusty interactions.

ours w/o SSP. From the results reported in Table 1 and
Table 2, we notice that the performance has a great degra-
dation on all datasets when omitting the semantic subgraph
of the smooth semantic preservation module. The observa-
tion demonstrates the semantic subgraph extracted by prede-
fined metapaths is effective by ignoring task-irrelevant rela-
tions. Intuitively, ours w/o SRL together with ours w/o SSP
demonstrate the effectiveness of denoising unreliable inter-
action from the local structure and smooth semantic views.

Methods DrugBank (Multi-class) TWOSIDES (Multi-label)

Micro-F1 Micro-Rec AUC-ROC AUC-PR

GCN-KG 79.34 ± 0.16 82.56 ± 0.23 85.22 ± 0.32 82.57 ± 0.12
RotatE 76.41 ± 0.11 80.71 ± 0.15 85.92 ± 0.18 82.69 ± 0.21
GraIL 83.39 ± 0.35 76.11 ± 0.46 83.72 ± 0.18 80.73 ± 0.09
KGNN 76.13 ± 0.32 74.62 ± 0.42 86.97 ± 0.23 82.71 ± 0.41
SNRI 84.57 ± 0.13 82.13 ± 0.19 85.24 ± 0.54 81.75 ± 0.27

SumGNN 85.58 ± 0.10 82.79 ± 0.19 87.42 ± 0.16 82.65 ± 0.07

DenoisedLP 87.51 ± 0.11 85.55 ± 0.13 88.62 ± 0.09 84.73 ± 0.12
ours w/o SRL 85.67 ± 0.19 82.31 ± 0.13 86.21 ± 0.21 82.36 ± 0.25
ours w/o SSP 84.59 ± 0.15 83.01 ± 0.19 85.38 ± 0.06 83.12 ± 0.22
our w/o MI 85.07 ± 0.31 82.87 ± 0.24 85.96 ± 0.05 82.81 ± 0.32

Table 2: The results comparison on DrugBank and TWO-
SIDES for DDI prediction. The best is marked with bold-
face and the second best is with underline.
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Figure 3: Hyper-parameter sensitivity analysis of DTI pre-
diction based on the DrugBank dataset.

ours w/o MI. Additionally, we remove the MI maximiza-
tion from DenoisedLP, resulting in a reduction of perfor-
mance on all datasets for both tasks. The results demonstrate
that the learned reliable substructure, guided by smoothing
semantic relations and the removal of task-irrelevant rela-
tions, is effective in enhancing the performance of KG-based
methods. These findings of the various variants show the
original model DenoisedLP can effectively enhance the su-
perior performance of the link prediction tasks.

Hyper-parameter Sensitivity
We conduct hyper-parameter sensitivity analysis on the
Drugbank dataset for DTI prediction to study the influence
of several hyper-parameters.

Impact of embedding size. We explore the effect of hid-
den embedding size by varying it from 32 to 516. The left
of Figure 3 depicts the changing trend of the AUC-ROC and
AUC-PR values on the DrugBank dataset evaluated on De-
noisedLP. Based on the results, we observe that the AUC-
ROC values of DenoisedLP variation across different em-
bedding sizes collapsed into a hunchback shape. The reason
could be that enough embedding size can represent more in-
formation, while the larger one will progressively introduce
a lot of noise with the degradation of DenoisedLP.

Impact of reliability estimation. To investigate the im-
pact of various reliability estimation function F (·, ·) defined
in the Section Structure Reliability Learning, we conduct
experiments by varying the estimation types to the Atten-
tion, MLP, Weighted_Cosine, and Cosine. As illustrated in
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Figure 4: Performance comparison over various noisy types
with different ratios. The bar represents the AUC-ROC and
the line indicates the degradation ratio on the value.

the right of Figure 3, the Attention with linear attention mod-
eling the reliability weight between nodes set has the best
performance. The MLP adopts a 2-layer preceptor, which
achieves a secondary best result by learning the weight of
the node pairs from extracted local subgraph. This is be-
cause the attention mechanism can better model the impor-
tance of node pairs compared with the MLP, which improves
the effectiveness of estimating the reliable edges. Addition-
ally, the parametric Weighted_Cosine is better than the non-
parametric Cosine indicating the learned weight coefficient
guided by the downstream prediction tasks is more efficient.
As a result, we set the Attention estimator to learn the relia-
bility weights effectively.

Robustness of Interaction Noises
To verify the effectiveness of structure reliability learning
and smooth semantic preservation modules in denoising in-
teraction noise, we generate different proportions of struc-
tural and semantic negative interactions (i.e., 25%, 50%,
and 75%) to contaminate the training knowledge graph.
The reported performance of various models is evaluated
on the unchanged test set shown in Figure 4. Structural
noises are generated by sampling unknown triples from all
possible entity-relation-entity combinations, while seman-
tic noises are sampled from all missing triples with reason-
able entity-relation-entity schemes (e.g., the scheme (drug,
drug_disease_treat, disease)). We then perform DenoisedLP
and its variants (i.e., ours w/o SSP for structural noise and
ours w/o SRL for semantic noise) on the noisy KG and com-
pare their performance with semantic subgraph-based SNIR
and global KG-based TriModel. As shown in Figure 4, the
AUC-ROC values on DrugBank and the corresponding per-
formance degradation ratio are presented.

We observe that as more noise is added, the performance
of all models deteriorates for both structural and semantic
experiments. This is because the introduced noise weakens
the expressive power of the aggregated neighbor informa-
tion. However, DenoisedLP and its variants exhibit smaller
degradation than other methods for both types of noises.
The variants ours w/o SSP and ours w/o SRL have lighter
changes as the noise increases than SNRI and TriModel on
structural and semantic noise respectively, which indicates
the structure reliability learning and smooth semantic sub-
graph can effectively denoise noisy interactions and ignore
task-irrelevant relations. Furthermore, the gaps between De-
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Figure 5: The original noisy subgraph and the refined sub-
graphs constructed from SumGNN and DenoisedLP.

noisedLP and SNRI grew larger with increasing noise. This
is because our model pays more attention to the informative
interactions by maximizing the mutual information between
the refined local and semantic subgraphs. This phenomenon
shows that DenoisedLP can effectively mitigate noises using
the reliable structure and smoothed semantics.

Case Study

We conduct a case study for predicting DTI relation between
the drug DB00130 and the gene PPAT to demonstrate the ef-
fectiveness of DenoisedLP, shown in Figure 5. In the original
subgraph, the different entities DB00130 and Chebi:28300
represent the same drug L-Glutamine, but they are unalign-
ment, resulting in the absence of an interactive edge (i.e.,
DB00130, interaction, glutaminase). By learning the reli-
able structure of the original subgraph, DenoisedLP effec-
tively establishes a connection between the drug DB00130
and the gene glutaminase, which brings favorable informa-
tion for predicting the DTI relation between DB00130 and
PPAT. However, SumGNN uses pre-trained node features to
calculate the attention weights of existing edges and prune
them, potentially ignoring reliable information and failing
to build missing edges to bring information interaction. This
case shows that DenoiseLP can effectively learn a reliable
structure, enhancing the performance of link prediction.

5 Conclusion

In this paper, we proposed a novel denoising model called
DenoisedLP for predicting missing links with DTI and DDI
relations on biomedical KGs. To mitigate the negative influ-
ence of noise in the KG, we proposed a structural reliability
learning module to denoise unreliable links. Additionally,
we adopted expert knowledge to blur the noisy relations and
preserve the semantics. Moreover, we modeled the learned
reliable and smoothed semantic subgraphs by MI maximiza-
tion to emphasize the informative interactions for the down-
stream tasks. Our experiments on four datasets for DTI and
DDI link predictions demonstrate that DenoisedLP signifi-
cantly outperforms several existing state-of-the-art methods.
These results verify the robustness of our model against in-
teraction noises. In the future, we plan to construct a new
high-quality biomedical KG based on the end-to-end denois-
ing model as the foundation for accelerating drug discovery.
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